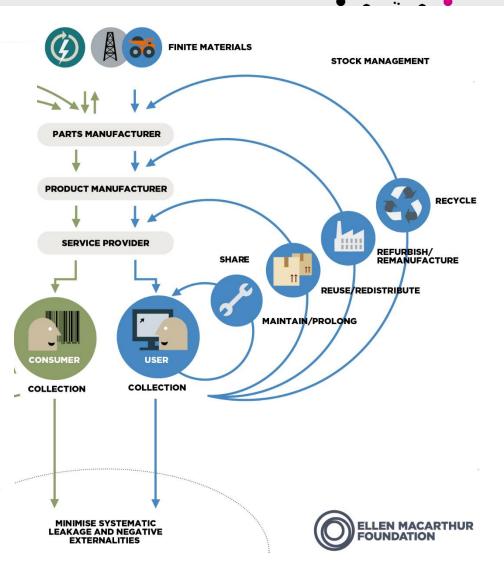


Met4Tech – UKRI Interdisciplinary Circular Economy Centre for Technology Metals

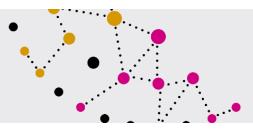
(PI - Prof Frances Wall, Camborne School of Mines, University of Exeter)

UKRI Interdisciplinary Centre for Technology Metals (21 Co-Is, 9 PDRAs, 8 PhD Students, 3 man./policy staff, 50+ partners (£1.6 million cash/in-kind) Met4Tech Theme 1 – Virtual Data Observatory – Stocks / Flows & Practices Li, Co, REE, Te, Se, PGM, In, W, Sn, Ta, Ga, Nb, Sb ... British Geological BGS Survey Theme 2 -Theme 3 -UNIVERSITYOF BIRMINGHAM **CE Principles for Raw materials** Design, Manufacturing, & new Geo-models & Recycling Technologies UNIVERSITY OF **EICESTER** ETER | BUSINESS Theme 4 - Roadmap for a new technology metals circular economy system The University of Manchester Sustainable Consumption Institute **SOCIAL SCIENCES & VALUE CHAINS POLICY & GOVERNANCE ENVIRONMENTAL & LCA RESPONSIBLE INNOVATION**


Research Areas for Collaboration?

We need to transform the current linear system for supply/use (take-make-waste) into a new **Technology Metals Circular Economy system and network**.

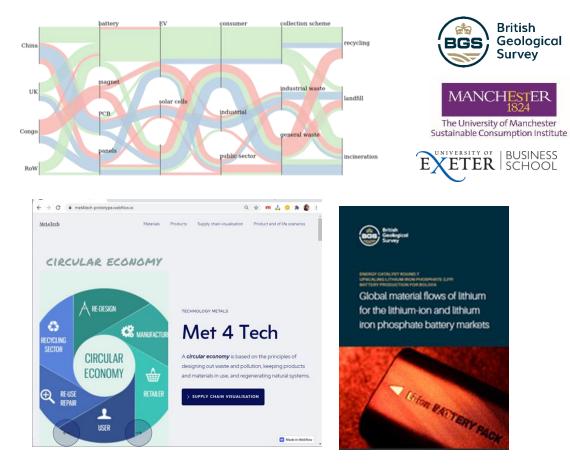
Some Areas for collaboration opportunities include:


- New approaches for the extraction/production of tech metals that reduce waste, energy use, and pollution.
- Ways to retain technology metals for use in strategic applications and in products with longer service life;
- Innovative technology for more efficient recovery and recycling of technology metals from wastes/products at end-of-life; and,
- New industry/business models with more circular approaches to promoting the technology metal values chains in the UK.

SOURCE Ellen MacArthur Foundation *Circular economy systems diagram* (February 2019) www.ellenmacarthurfoundation.org Drawing based on Braungart & McDonough, Cradle to Cradle (C2C)

Antimony	Sb	Alloys, Batteries, semi-conductors
Cobalt	Со	Batteries, superalloys, catalysts, magnets
Gallium	Ga	Electronics (circuit boards and optoelectronics)
Germanium *	Ge	Electronics (IF detectors and thermal imaging)
Indium	In	Photovoltaics, Batteries, LCDs, phone screens
Lithium - UK	Li	Batteries
Niobium	Nb	Super conductor, electronics
Platinum Group Metals	PGM	Auto catalysts, fuel cells, electronics
Rare Earth Elements	REE	Magnets (wind turbines, EVs), catalysts, phosphors (low energy lighting), alloys, smartphones
Selenium *	Se	Electronics, alloys
Tantalum (3TG)	Та	Electronics, superalloys
Tellurium	Те	Alloys, solar cells
Tin – UK (3TG)	Sn	Solder in all electronics
Tungsten – UK (3TG)	W	Wear-resistant materials, superalloys, electrical and electronics, catalysts

- All metals shown above are on UKs List of Critical Minerals 2022 (* except for Ge and Se)
- Several of these metals (Li, Sn, W) have mineralisation / mining projects in the UK
- Metals shown as 3TG are on the list of Conflict Minerals


Thematic Area 1 (TA1) Evi Petavratzi, Markus Zils

Overall objective:

- To develop a knowledge base for assessing flows and stocks of technology metals across their value chains.
- To form the UK tech metals CE National Virtual Data Observatory (NVO)

Key questions addressed in TA1:

- Where (sectors/ applications/ products) are tech metals located in the UK economy?
- What is the tech metals resource potential in UK stocks?
- What is the fate of the UK tech metal stocks reaching the end-of-life stage and the amount of leakage across existing systems?

Thematic Area 2 (TA2)

Karen Hudson-Edwards, Aleks Cavoski

CE Principles for Raw Materials & new Geo-Models

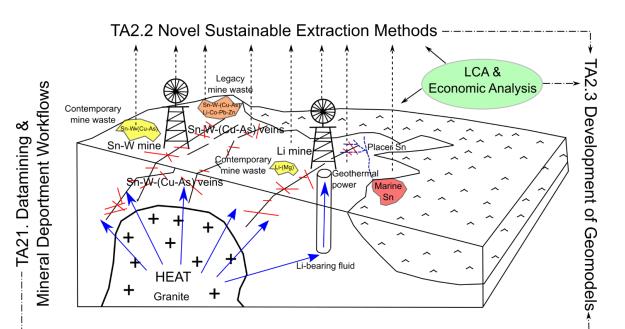


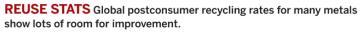
Figure 2. Preliminary conceptual circular economy geomodel for Cornish granite-related Li, Sn and W mineralisation and related mine waste

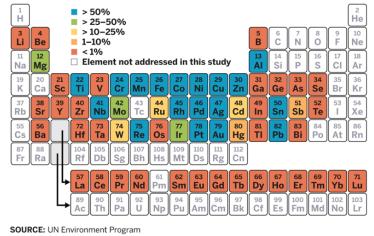
Case Studies & Projects:

- Granite-related (Li, Sn, W) mineralisation and related mine waste in Cornwall – in progress
- Cobalt deposits mined by large scale mining (LSM) and artisanal and small-scale mining (ASM)
- Carbonatite-related REE mineralisation and mine wastes
- Maximising value of (Te, Bi, W) by-products from gold mining

Thematic Area 3 (TA3)

Pyrometallurgy


Andy Abbott, Allan Walton

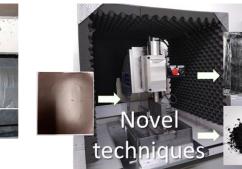

Design, Manufacturing & Recycling:

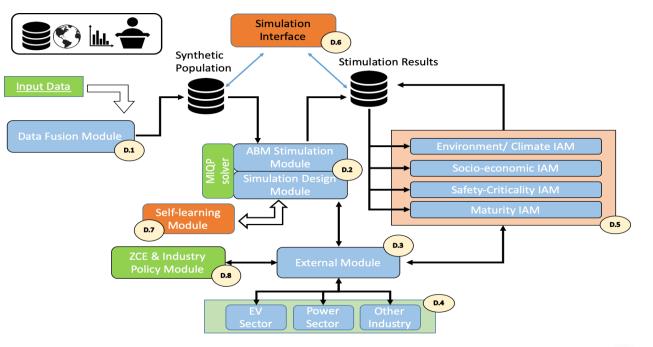
Hydrometallurg

Develop novel separation and recycling techniques for technology metals, linking together chemistry, materials science, AI and robotics.

oaration

Fast and selective separation methods:


Fast delamination techniques
Changes in physical properties
Developing selective etchants
Developing de-bondable adhesives
Design for recycle and reactor design



Thematic Area 4 (TA4)

Josh Ignatius, Frank Boons

Developing the technology metals CE Roadmap: Agent-Based Model with Policy Evaluation Architecture

We will examine: Scenarios, Interventions, and Options

We will conduct: Deep Dive / Spark sessions, Constructor Workshops, and User Testing of the Roadmap

EXETER

UNIVERSITY^{OF} BIRMINGHAM

MANCHESTER

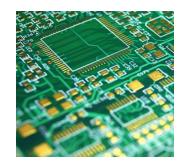
The University of Manchester

Sustainable Consumption Institute

Some recent Case Study Examples:

Joint Case Study Met4Tech & CE-Hub

Value chains for Rare Earth Elements (REEs) used in Magnets for Electric Vehicles (motors) and Wind Power (turbine blades)


Cornwall Case Study with Company partners

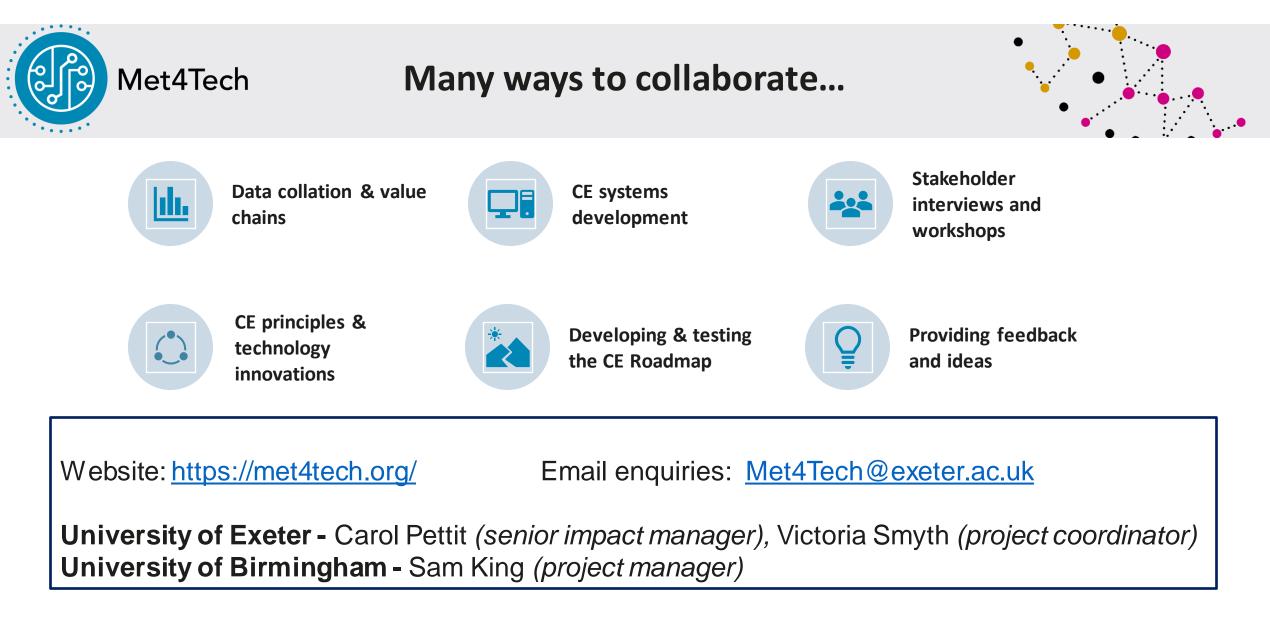
Looking at lithium, tin, tungsten mineralisation and applying new Circular Economy Geo-models (*will also be contributed to* UN Resource Management System)

Lithium-Ion Batteries Value Chain

Ten challenges for developing a circular economy for Lithium-ion batteries

Solvent Extraction / Delamination Research Innovations

Recovery of tech metals from waste electronic products such as mobile phones, photovoltaic devices, super-magnets, and lithium ion batteries


Responsible Innovation

Development of guidelines based on transparent interactive review of activities and 'learning lessons' for more circular and sustainable approaches

